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Today’s developers are facing tremendous challenges to keep
up with skyrocketing network I/O rates. As CPU perfor-
mance and memory bandwidth scaling stagnate, the compute
capacity headroom for running network application logic is
shrinking, leaving a few hundreds cycles for processing at
line speed. To scale, future applications will have to break
out of CPU-centric designs, instead processing data in flight
on the NICs during the transfer.

Emerging NIC architectures are turning this vision into
reality, incorporating increasingly programmable compute
elements. For example, recent Mellanox-Innova NICs host
a large Xilinx FPGA which can perform any function or
serve as a network endpoint itself. Cavium LiquidIO, EZChip
TileMX100, Netronome Agilio SmartNIC and Mellanox Blue-
field NICs (will) allow executing arbitrary custom processing
functions implemented in C. Kaufmann et al. present a pro-
grammable NIC based on match and action pipelines [3].

These modern intelligent NICs, or iNICs, are being inte-
grated into modern data-centers [2], a process mostly driven
by their ability to offload network functions such as virtualiza-
tion bridging, network address translation, firewalls, network
cryptography acceleration, and other network and transport
layer applications. Yet since iNICs are programmable, they
have the potential to accelerate higher level applications.
Given a machine that is already equipped with an iNIC it
would be worthwhile to utilize them for the benefit of other
applications.

Consider, for example, a network service for processing
temperature measurements from multiple sensors. An iNIC
may extract the application data and execute a simple data
analysis on each message, passing to the host only the mes-
sages with abnormal measurements. Beyond such filtering
scenarios, an iNIC may dynamically steer the received data

MaRS 2017, Belgrade, Serbia

2017. 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

// 1. NIC -side init.

k = ikernel (THERMOMETER_ID);

// 2. Communicate iKernel parameters

ik set (k, "critical_temp", 55);

// 3. Host -side socket init.

s = socket();

bind(s);

// 4. Set -up socket on the NIC

ik attach(k, s);

// 5. Read iKernel -specific state

ik get (k, "average_temp");

Figure 1: ikernel software integration example

directly to another peripheral or accelerator device, e.g.,
NVMe SSD or a GPU while removing the CPU from the
data path. The key enabler for such an accelerator-centric
design is the iNIC’s ability to execute transformations on
network data to match the format of the target device; today
such transformations must be done on the CPU.

Unfortunately, moving application logic to the iNIC is
a substantial challenge. The traditional network processing
paradigm, like the one used in Click [4–6], DPDK, or P4 [1]
is a poor match for developing application-level code we
consider in this work. These systems expose raw Ethernet
packets directly to user code on the iNIC, bypassing the
network abstraction layers, network data protection and I/O
performance isolation mechanisms in the OS. Moreover, the
iNIC itself provides no isolation for its tasks, each being able
to monopolize the NIC resources. Finally, the programmer
faces the daunting task of implementing low-level network
processing code, developing application-specific interfaces to
interact with the iNIC from the CPU, and ends up with a
highly hardware-specific, non-portable code.



In this work we develop NICA, a set of new OS abstrac-
tions and APIs that facilitate application development for
both the iNIC and the CPU, and add support for efficient
and safe execution of user code on iNICs. NICA offers a
simple extension to the socket interface in spirit of Berkeley
Packet Filters (eBPF): an application dynamically attaches
a processing kernel, ikernel, to one or more network sockets,
and uses a standard socket API to send and receive data
(Figure 1). Underneath, the ikernel receives the transport
layer packets (we currently support UDP) destined to or
originated from the application, but also may create, drop or
modify packets by itself. The ikernel maintains its state in
local iNIC memory, which can also be accessed by the CPU.
In our temperature monitoring example we store the total
packet count, classifier parameters in that memory, and also
use it for error reporting and debugging.

The guiding principles of our design are as follows: (1) Ease-
of-development OS abstractions for efficient data path
(send/recv), iNIC execution control (ikernel execution man-
agement and access to its state) and iNIC-CPU interaction.
(2) Compatibility with network stack Seamless integra-
tion of iNIC processing with higher levels of the network
stack (e.g., coordination of routing and ARP tables to enable
sending packets from iNIC). (3) Network I/O Isolation
and protection Support for multiple ikernels on iNIC: iNIC
resource arbitration and network data protection between
ikernels of different CPU processes; low overhead for network
flows which do not have ikernels attached. (4) Portabil-
ity Support for the CPU fallback to allow portability with
regular NICs, simplified development and debugging. (5) In-
teroperability with regular network I/O Compatibility
with other network endpoints unaware of iNIC acceleration.

Our prototype uses a Mellanox Innova NIC, which com-
bines a NIC and an FPGA in a bump-on-the-wire design.
We develop ikernels in High-Level Synthesis (HLS) inside the
vendor-provided sandbox having Ethernet MACs, NIC mem-
ory access, control registers and reliable command channel.
We extend it with the UDP stack functionality which includes
packet steering, header and data split and checksumming.
Packets arriving at the NIC are associated with a flow using a
steering unit and are passed to the application logic together
with the application defined context.

The ikernel hardware interfaces are based on AXI4-Stream
allowing high speed data transfers to and from the ikernel.
For each port (host and network) there are ingress and egress
packet streams that pass UDP payload data. In addition,
each packet stream is accompanied by a context stream, con-
taining per-packet metadata. In order to control the ikernel’s
operation, an AXI4-Lite interface is used to expose a custom
register space.

Providing isolation between ikernels is important for mul-
titenancy and the stability of the system. We identify 4
areas where contended resource need isolation or arbitration.
(1) Network ports Generating packets towards the net-
work and to the host requires access to the shared network
ports and arbitration is necessary. The arbiter can implement
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one of the common packet scheduling algorithms or perhaps
a programmable scheduler [7] can be used. (2) DRAM
memory Local DRAM memory is limited in capacity and
in bandwidth. In order for the ikernels to share the DRAM
interface, a memory management unit (MMU) must be used.
(3) Power management One may wish to limit the power
used by an ikernel, by pausing its operation or with frequency
scaling. (4) FPGA resources While FPGA resources such
as LUT and BRAM units are limited, their distribution is
done in advance as part of the FPGA bitstream synthesis.

We implement the thermal monitoring service which counts
the number of application messages and calculates the tem-
perature statistics (min,max,average). We use a standard
unmodified UDP remote client to generate the load. Our pre-
liminary performance results show that the iNIC can process
24.4 millions of packet/s, which is 12.3× higher than the
host CPU using 6 cores and running standard Linux network
stack (Figure 2), while using 30% less power (Figure 3).
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