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ABSTRACT
As GPUs become general purpose, they are outgrowing the co-
processor model and require convenient I/O abstractions such as
files and network sockets. Recent studies have shown the benefits
of native GPU I/O layers, in terms of both programmability and
performance. However, due to lack of hardware support, the GPU
threads performing I/O calls are forced to busy-wait for the comple-
tion of I/O operations, resulting in underutilized hardware, higher
power consumption, and reduced system throughput.

We argue that I/O-driven preemption improves the performance
of existing solutions, despite many challenging system characteris-
tics such as a large kernel state. We analyze the benefits of adding
preemption support using a simple system performance model, and,
encouraged by the results, explore the design of a software-based
preemption mechanism for GPUs. In our prototype, GPUpIO, we
implement a source-to-source compiler for state checkpoint and
restoration, and a runtime library for scheduling preempted thread-
blocks, which together enable I/O-driven preemption for GPUs.

We evaluate our prototype across a variety of system parameters
and workloads to determine when preemption is worthwhile. We
show that in some workloads the I/O-driven preemption approach
may indeed double the effective system throughput by completely
hiding the I/O latency behind computations. However, we also ob-
serve that the software-only solution is currently limited, not only
due to its overheads, but also because it does not have sufficient
control of the hardware scheduler queue and therefore may lead to
starvation of I/O kernels. We then discuss a new hardware feature
that, if added, may render a general I/O-driven preemption mecha-
nism on GPUs practical.

CCS Concepts
•Software and its engineering→ Scheduling; Compilers; •Computer
systems organization→ Single instruction, multiple data;
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1. INTRODUCTION
Over the last few years GPUs have made a gigantic leap forward

toward efficient acceleration of general purpose computing applica-
tions. In line with the hardware enhancements, recent work shows
that I/O abstractions such as file and network I/O available directly
from GPU code provide significant programmability and perfor-
mance benefits. Coupled with direct access to I/O devices, these
abstractions make it possible to build efficient I/O intensive appli-
cations that access network and storage directly from GPU code.

For example, GPUnet [3] provides a CPU-like socket API that
makes sending data over the network from the GPU as simple as
sending data from the CPU. Such a native I/O exhibits three impor-
tant programmability and performance advantages. First, it elim-
inates the need to exit the GPU kernel in order to send or receive
new data, thereby saving the kernel invocation and synchronization
overheads. Second, the underlying system seamlessly takes advan-
tage of advanced hardware capabilities, such as peer-to-peer DMA,
that enable direct access to the I/O hardware, bypassing the CPU
for both data transfer and control. Last, pending I/O operations that
block a few threads of the GPU kernel are overlapped with compu-
tations performed by other threads, enabling I/O pipelining.

Along with these benefits, the use of GPU native I/O operations
has one important limitation, in particular in the case of slower I/O
devices like disks. In the absence of hardware support for interrupt
delivery to GPU application code, a GPU kernel must spin on an
I/O control register (maintained by the I/O device or by the CPU) in
order to block while waiting for the completion of an I/O operation.
As a result, the spinning threads waste GPU compute resources,
resulting in lower effective GPU utilization and lower power effi-
ciency, in particular when there are other GPU kernels waiting for
execution. GPU underutilization due to I/O is also a problem in
GPUs that support page faults, as is the case for existing hybrid
GPU-CPU systems and expected in future discrete GPUs.

In CPU systems the problem was solved long ago with the interrupt-
driven I/O design: the blocked process is preempted – removed
from the CPU run queue – and the OS reschedules it after receiving
an interrupt notifying of the I/O request completion. Unfortunately,
GPUs do not deliver interrupts to GPU code, and the GPU hardware
scheduler provides no public APIs for controlling its queue. Thus,
none of the existing GPU libraries implements I/O-driven preemp-
tion.

In this paper we explore the idea of adding an I/O-driven pre-
emption mechanism to GPUs. To understand the range of system
parameters for which preempting the execution may improve the
system throughput, we construct a simple performance model pa-
rameterized by the workload compute intensity ( compute

IO
) and the

preemption overhead. We use this model to show that the preemp-
tion improves the system throughput for I/O bound GPU work-
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loads, even when the preemption overhead is as high as one-half
of the I/O time. This result motivates our further efforts to proto-
type a complete preemption mechanism in software, GPUpIO, on
NVIDIA GPUs. We use GPUpIO to evaluate the overheads and
analyze the system tradeoffs of using preemption in a set of I/O
intensive workloads that perform disk I/O from GPU code.

The basic idea in GPUpIO is quite similar to the CPU preemp-
tion mechanisms: instead of waiting in a spinlock on the GPU, the
threads blocked on an I/O operation are evicted from the GPU and
then re-invoked when the I/O operation completes. Our design is
built on the following ideas:
Preemption granularity We perform I/O preemption at the gran-
ularity of a single threadblock, terminating and later restarting all
the threads in it. There are several reasons for this decision. First,
evicting a few threads of a warp, or a few warps of a whole thread-
block, would prevent warps from other threadblocks from using the
same core, because the hardware scheduler operates at a thread-
block granularity. Thus, GPU resources would still remain under-
utilized. Second, current GPU I/O libraries follow a threadblock-
level API design. Thus, calls such as read/write/send/recv must
be collaboratively and synchronously invoked by all the threads in
a threadblock. Consequently, the blocking I/O calls block all the
threads in the entire threadblock (even through only one thread is
spinning). Finally, breaking a threadblock into parts greatly com-
plicates the checkpoint-restart logic (described below), and makes
it hard to maintain correctness of threadblock-wise synchronization
operations.
Checkpoint-restore We implement a checkpoint library that saves
the active state of a threadblock in global memory and then restores
it when the threadblock is reinvoked later. In order to capture the
active state of a threadblock, we build a CUDA source-to-source
compiler that analyzes the original code and instruments it with the
checkpoint and restart logic.
Preemption-restart The threadblock preemption is triggered by a
GPU I/O library when the GPU issues an I/O call that is expected to
block. The I/O call checkpoints the threadblock state, after which
all the threads in a threadblock terminate. The CPU runtime may
notify the GPU that the I/O call is expected to return shortly, which
leads the GPU to choose spinning. The CPU runtime handles the
I/O call and reinvokes the threadblock in a separate kernel in an-
other CUDA stream. When re-invoked, the threadblock recovers
its entire state. In particular, we replace the values of the hardware
constants, such as blockIdx and gridDim, to match the values
of the original kernel.

To evaluate the preemption mechanism, we integrate it with a
simple I/O library that allows the GPU to read blocks from files. In
our experiments we run several sets of mixed workloads containing
different numbers of I/O bound and compute bound kernels. For
the I/O-bound kernel we use a matrix product kernel that reads its
inputs from hard disk. We choose the compute-intensive workloads
from the Rodinia[1] benchmark suite.

Our results provide a number of interesting insights. First, the
total system throughput is almost doubled, achieving optimal uti-
lization with full I/O-compute overlap in some cases, despite the
preemption overheads, as predicted by the model. Second, the
preemption overhead is dominated by the threadblock restart time,
whereas the overhead of the state checkpoint and restore is in the
order of few microseconds and practically negligible. Third, we
expose a limitation of the software-only I/O-driven preemption ap-
proach presented here: I/O intensive kernels are effectively starved
by the compute kernels, which cannot be preempted.

The main contributions of this work are as follows:
• Analysis of the expected performance benefits of the I/O-driven

preemption.
• A complete prototype that implements a preemption mechanism

on commodity NVIDIA GPUs.
• Experiments that show significant throughput benefits of pre-

emption on the one hand, but also highlight the need for hardware-
assisted preemption mechanisms to avoid the starvation of I/O
intensive kernels. We discuss one possible hardware assisted de-
sign in §7.
This paper begins with an overview of I/O-driven preemption in

CPU OS and the challenges of adopting these methods for GPUs
(§2). We then present an analysis for the performance gains of
preemption (§3). We then discuss the design of a software-based
solution (§4), our implementation (§5), and experimental results
(§6). Finally, we discuss the limitations of a software-based solu-
tion and propose a hardware extension to alleviate the overheads
(§7), survey related work (§8), and conclude (§9).

2. BACKGROUND
We provide an overview of I/O driven preemption on CPUs and

the GPU software/hardware model. We use NVIDIA CUDA [6]
since we implement GPUpIO on NVIDIA GPUs; however, most
other GPUs that support the OpenCL standard [12] follow the same
semantics and concepts.

I/O-driven preemption in CPU OS.
A classic interrupt-based I/O design enables efficient use of CPU

resources while a process is blocked waiting for completion of an
I/O operation. The process is preempted and removed from the OS
run queue, making the CPU available for other processes, thereby
overlapping the I/O with computations and improving CPU utiliza-
tion. The process is resumed after completion of the I/O call, usu-
ally by an I/O interrupt handler.

GPU execution and scheduling.
GPUs are massively parallel processors that expose program-

mers to hierarchically structured hardware parallelism [4]. They
comprise multiple cores – streaming multiprocessors (SM) – which
have access to shared global memory. Multiple threads are grouped
into a threadblock running on an SM, and multiple threadblocks
form a GPU kernel. All threads in a threadblock share a limited,
on-die shared memory, and are executed on the same SM.

If the number of threadblocks in a kernel exceeds the number
of SMs on the GPU, the threadblocks are enqueued into a hardware
queue from the CPU, and the GPU hardware scheduler dynamically
schedules them on the SMs. Once a threadblock has been invoked
on an SM, it cannot be preempted and occupies that SM until all its
threads terminate.

The lack of control over threadblock scheduling, and the lack
of support for interrupts, make it hard to build an efficient native
I/O layer for GPUs. In light of the GPU hardware constraints, in
this paper we explore the design and prototype of an I/O-driven
preemption mechanism for GPUs.

3. PERFORMANCE MODEL
In this section we analyze the expected impact of preemption on

system throughput. We do so by constructing a simple performance
model for the system with and without preemption and comparing
their throughput.

Consider a GPU with one SM that can run only one threadblock
at each point in time. We denote I to be I/O operation time per
threadblock, C > 0 to be the computation time per threadblock,
α the preemption overhead per threadblock, and B the number of
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Figure 1: The relative throughput of a system with preemption
over blocking I/O as a function of compute-to-IO ratio and dif-
ferent β. Smaller β correspond to higher overhead relative to
the I/O time.

threadblocks to run. The total execution time of an IO-bound kernel
without preemption is:

B × (I + C),

while the total execution time of the same kernel with preemption
is:

B × (max{I, C}+ α) + C ≈ B × (max{I, C}+ α).

The computation time per threadblock is not dominant for large
enough values of B, and therefore we ignore it. Thus, the expected
speedup due to preemption is:

I + C

max{I, C}+ α
.

This model is simplistic because it assumes the worst-case sce-
nario where there is no overlap between computations and I/O in
the system without preemption. Nonetheless, it allows us to intuit
when preemption is worthwhile.

We evaluate the model for different compute-to-IO ratios, and
for different β , I

α
. β < 1 indicates that the preemption over-

head is larger than the I/O time. A larger β means lower overhead
relative to I/O time. In addition, given a compute-to-IO ratio, β in-
dicates the relationship between the compute time and preemption
overhead.

The graph in Figure 1 shows the relative throughput of a system
with preemption as a function of compute intensity (compute/IO).
To obtain this graph, we vary the computation time for several fixed
values of β.

The maximum is achieved at β = ∞ and compute intensity of
one. This makes sense since we have a pipeline of two stages,
and the best performance is guaranteed when these stages are com-
pletely balanced, under zero preemption overhead. The more bal-
anced the pipeline, the lower the sensitivity of the performance to
the negative impact of preemption overhead. However, for purely
I/O bound workloads, preemption is less beneficial in general, and
in fact slows down the system significantly.

For the workloads dominated by compute-intensive kernels with
higher compute-to-IO ratio, the benefits of preemption decrease.
We see this clearly in Figure 2.

We conclude that a preemption mechanism implemented purely
in software might still improve the system throughput for many
workloads despite the relatively high expected overhead.
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Figure 2: Preemption becomes unnecessary for compute-
intensive workloads

4. DESIGN
The design of the preemption mechanism involves two key com-

ponents: a mechanism for kernel execution state checkpoint-restore,
and a mechanism for preempting-restarting a threadblock. We now
describe the main design considerations.

4.1 Checkpoint-Restore mechanism
Checkpoint-Restore (CR) is a mechanism that makes it possi-

ble to halt the execution of a running threadblock, checkpoint and
seamlessly restore its state (registers, program counter, shared mem-
ory), and restart the execution where it left off at a later time.

Several main design challenges must be overcome to implement
the checkpoint-restart functionality in the general case:

1. Determining the active state per thread.
2. Terminating threadblocks at an arbitrary point, difficult due to

control flow divergence.
3. Limited amount of GPU RAM.
We address the first challenge by implementing a source-to-source

compiler that analyzes the original code, determines the active state
at the checkpoint, and instruments the code with the necessary save
and restore procedures, as we describe in Section 5.1.

The second challenge is less critical for implementing I/O-driven
preemption. This is because the existing GPU I/O libraries assume
that an I/O call is invoked jointly and concurrently by all the threads
in a threadblock at the same point in the code. Thus, at the point of
an I/O call, it is guaranteed that there will be no divergence.

We defer the solution to the last challenge for future work. We
do not expect this problem to be serious in practice, since in our
experience the per-threadblock state is relatively small, and is much
smaller than the theoretical maximum.

4.2 Preemption-Restart mechanism
A preemption-restart mechanism allows the system to preempt

a certain threadblock and then restart it later. The preempt-restart
uses the checkpoint-restore mechanism internally.

The preemption - restart sequence is as follows: (1) a running
threadblock decides to preempt in coordination with the CPU; (2)
the state checkpoint is created; (3) the threadblock terminates; (4)
the threadblock is restarted later by the CPU runtime; (5) the execu-
tion state is restored, so the threadblock continues execution where
it left off.

Designing this mechanism in the general case in existing GPUs
is not trivial because:

1. GPUs provide no interrupt mechanism for the CPU for out-of-
bound communication with a running GPU kernel. Existing



interrupt handlers may only terminate all GPU threads.
2. GPU schedulers do not provide control over their internal hard-

ware queues, so a threadblock cannot yield and then return
without terminating

The first challenge is irrelevant for the I/O-driven preemption
mechanism we consider here, because the preemption is synchronous.
Namely, the threadblock yields the GPU resources on its own, rather
than preempted by a CPU.

To solve the second problem we approximate the ideal solution
as follows: when a threadblock terminates, it stores the hardware
constants like gridDim and blockIdx. When the threadblock
is restarted, it is invoked as a separate single-threadblock kernel
in a separate GPU stream. When the block is restored, its state,
including the hardware constants, is restored as well.

Note that this solution does not fully overcome the problem.
Without the ability to enqueue the restarting threadblock in the top
of the hardware run queue, this threadblock may be delayed or even
starved by other kernels. We elaborate on this limitation in Sec-
tion 6.

5. IMPLEMENTATION
In this section we describe the implementation, optimizations,

and limitations of GPUpIO. We implement a compiler and a run-
time library (scheduler). The compiler enables checkpoint-restore
by generating the code that saves and restores the active state at run-
time. The run-time library implements the threadblock preemption-
restart mechanism

5.1 Source-to-Source checkpoint-restart com-
piler

The compiler adds a block of code that saves the threadblock’s
state and halts execution. In addition, the compiler adds a restore
block that restores the threadblock’s state and continues the execu-
tion where it left off.

In order to allow a threadblock preemption, we introduce a #pragma
preempt directive that indicates to the compiler where to generate
the code for checkpoint and restore.

We implement a Source-to-Source compiler with the extended
CUDA language front-end and a CUDA back-end. We base our
implementation on yaCF, which is a front-end compiler for ac-
cULL [8] that implements the OpenACC standard. yaCF follows
the traditional approach of layer-oriented compiler design. A source
file is parsed in the front-end into the intermediate representation
(IR), transformations and optimizations are applied in the middle-
end, and code is generated by the back-end. yaCF wraps pycparser,
a C99-compliant Python front-end that uses an abstract syntax tree
(AST) as an IR. We extend the grammar to support CUDA. We ex-
tend the back-end to generate CUDA code for the new pragmas,
and finally we extend the middle-end to analyze the code and make
the necessary transformations.

The compiler performs live variable analysis to find live vari-
ables that are needed after the restore point. These variables are
checkpointed in a state struct, which includes all live variables and
the instruction pointer.

The following list summarizes the operations performed by the
compiler:

1. Parses the input code into an AST.
2. Locates the preemption points and performs a live variable

analysis for checkpoint and restore. This includes a simple
control flow analysis heuristic for avoiding preemption points
in divergent areas, and shared memory checkpoint and restora-
tion as defined by the layout of the shared memory.

3. Modifies the kernel by generating the appropriate checkpoint
and restore blocks.

4. Declares a state struct that will be passed to the kernel as an
argument and will hold the state of the kernel when evicted
from the GPU.

5. Extends the kernel argument list with this struct
6. Generates a set of functions: allocate, free and copy for this

memory area.
We consider a variable as live if and only if it is read after the re-

store point and it is not a constant. There is no reason to checkpoint
variables that will be later overwritten.

We define the checkpoint cost function, denoted as COST(P), as
the tuple (T, B), which is the state size (in bytes) that has to be
stored for preempting P. T is the number of bytes per thread and B
is the number of bytes per threadblock. The smallest preemption
state is to store 4 bytes of the instruction pointer per threadblock.
We note that our compiler may not be able to identify the state
with the smallest possible preemption cost because we do not have
access to the generated PTX code and perform transformations at
the level of an AST.

The compiler declares a new data structure – state struct – that
holds each threadblock’s state in a struct of arrays (SOA), in or-
der to make sure that the accesses to that struct at restore time are
coalesced. Each field in this struct represents an array to store the
contents of a register, shared memory, or the instruction pointer.

Since the state struct size is unknown statically, the compiler also
generates all the memory management calls.

Checkpoint and restore.
The compiler splits the code into n + 1 sections, where n is

the number of preemption points in the kernel. For each section it
analyzes the state needed for the rest of the computation and cre-
ates the struct with the union of the states at different checkpoint
points. The compiler injects a label at the beginning of each sec-
tion, and an epilogue block that checkpoints the data to the input
state struct and halts execution. The compiler also injects a barrier
__syncthreads call in order to ensure that the whole thread-
block is exiting. Therefore, placing a preemption point in a place
where the behavior of __syncthreads is undefined, e.g., a po-
tentially divergent if statement, is not allowed, and the compiler
delays the preemption point to the nearest convergence point.

To enable only one threadblock of the kernel to be restarted, the
compiler also extends the kernel’s argument with an input of the
original kernel’s configuration parameters (the grid dimensions and
the block dimensions).

Finally, the compiler injects a switch case in the beginning of
the kernel. This switch case allows the restart logic to restore the
correct state and jump to the correct preemption point.

Figure 3 illustrates the transformed kernel’s layout. It shows
a simple GPU kernel that invokes a read from disk followed by
computation, and its transformed layout. Each threadblock invokes
gread, which is a native GPU I/O function, similar to the read sys-
tem call, and then performs some computation on the data. The
threadblock preempts in cases when the data is not yet residing in
the GPU global memory. We simplify the compiled version for the
sake of brevity, and only visualize the main layout generated by our
compiler.

5.2 The run-time library
The run-time library is linked to a user’s GPU kernel. It performs

kernel scheduling, restarting the preempted threadblocks when needed
(e.g., upon the completion of the I/O call), and manages the mem-
ory for storing the state of the preempted threadblocks.



Figure 3: The layout of a transformed kernel. The left side is the original kernel, and the right side shows the final code generated
by GPUpIO.

The memory management is done by the allocate, free and copy
functions that are created by the compiler for each preemption point.
The run-time library is aware of these generated functions and calls
them when necessary.

The user invokes its kernels via the scheduler, and the GPU I/O
runtime uses the scheduler to restart individual threadlbocks.

5.3 Limitations
Our current prototype has a number of limitations.
• pycparser does not support C++, and therefore our parser fails

to parse templated kernels, or kernels using templated CUDA
functions such as tex2D.
• The scheduler invokes the preempted threadblocks one by one

instead of aggregating them in a single kernel invocation, po-
tentially reducing the overhead. On the other hand, we found
that launching many small kernels might actually improve the
system’s throughput by allowing multiple kernels to overlap.

6. EVALUATION
We evaluate our implementation on a machine featuring a 12-

core Intel Xeon E5-2620 CPU, NVIDIA Tesla K40m GPU with
12GB of GDDR5 memory, and a regular HDD Seagate Barracuda
ST1000DM003 7200 RPM. We run Ubuntu Linux kernel 3.13.0-
32, with CUDA SDK 7.0, GPU driver 352.39. We evaluate the
system performance with a set of microbenchmarks. For every data
point we report the median of 10 trials.

6.1 Overhead of the state checkpoint-restore
We define the checkpoint time as the time between the begin-

ning of the preemption until the threadblock terminates. Similarly,
the restore time is the time between the point when the block is
restarted on GPU, until its state is fully restored. We measure the
time using clock64() intrinsic.

We run the HotSpot application from the Rodinia [1] benchmark
suite (256 threads per threadblock, and 1849 threadblocks in total,
achieving full occupancy), and measure the checkpoint and restore
times for different state sizes. We change the checkpoint location
in the code to vary the state size. We measure the checkpoint and
restore times for all the threadblocks and report the average.

Figure 4 and Figure 5 show the checkpoint and restore times
when the state is stored in registers alone, and when in addition
a threadblock allocates 2KB of shared memory. Observe that the
total time for the state checkpoint and restore is in the order of
few µsec. Observe also that our checkpoint library imposes zero
overhead if it is not used (state size zero in Figure 4).

6.2 End-to-end benchmarks

Matrix product from files.
We implement a matrix product kernel ABT , which reads the

inputs from disk, in row-major data layout, via a native GPU I/O
layer specifically tailored for matrix product logic. We note that the
effective checkpoint state for this code is only 4 bytes used for the
metadata by the checkpoint layer. The data is read in the beginning
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Figure 4: State checkpoint/restore cost per threadblock, regis-
ters only.
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Figure 5: State checkpoint/restore cost per threadblock, regis-
ters plus 2KB of shared memory.

of each threadblock, and therefore the size of the active state is
zero.

The GPU I/O layer transfers all the I/O requests to the CPU via
CPU-GPU shared memory. The CPU reads the requested matrix
block from the file and copies it into GPU memory. We implement
a simple cache of read input blocks to avoid disk access if the GPU
requests a block that has already been transferred into GPU mem-
ory. The CPU also keeps track of all the pending disk requests and
eliminates duplicate requests generated concurrently by different
threadblocks. Finally, the I/O library implements the threadblock
preemption mechanism introduced in this paper.

Mixed workload.
We run a mixed workload comprising compute-intensive and

I/O-intensive kernels. We choose SRAD and PathFinder from the
Rodinia benchmark suite to represent compute-intensive applica-
tions that perform no file I/O. The SRAD application invokes four
kernels, each running for 100ms on average. The PathFinder ap-
plication invokes many short kernels for a total of 400ms. We use
the matrix product that reads its inputs from files as an I/O inten-
sive application. Each matrix is a squared matrix of order 1K with
float elements, and its execution (including I/O) fully occupies the
device for 80ms, where the compute intensity is about 6%.

In the experiments we vary the number of I/O-intensive kernels
from 1 to 10, each reading from a different file, while keeping the
number of compute-intensive kernels the same. This allows us to
change the relative amount of I/O in the workload. Note that the ex-
ecution times are tailored to achieve full overlap between the com-
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Figure 6: Relative throughput for mixed workload with disk.
Higher is better.

putations and I/O. In each experiment we invoke all the kernels at
once by queuing them into different CUDA streams. We flush the
OS page cache before each trial to enforce reads from disk.

Throughput with disk I/O.
We measure the improvement in system throughput by compar-

ing the total runtime for all the kernels together, with and with-
out preemption. The results in Figure 6 show that the throughput
reaches the upper bound (assuming full overlap of compute and
I/O) for 5 I/O kernels. We set the full overlap trend to be an ap-
proximation for the ideal case where the I/O is completely hidden
by computation. However, as can be seen in the results, an over-
lap of the restarted matrix product threadblocks and the PathFinder
kernels can even further improve the system’s throughput.

Figure 7: A profiler snapshot of 5 concurrent IO kernels read-
ing from disk using spinning and the two compute kernels. The
horizontal axis is time and the vertical axis shows compute and
DMA transactions. The first row (with brown lines) shows
the asynchronous memory copies. The other rows show ker-
nel computations. If there is an overlap between two kernels,
the profiler inserts a new row with that kernel.

Figure 8: A profiler snapshot of 5 concurrent IO kernels read-
ing from disk with preemptive IO and the compute kernels.
Long lines are compute kernels. Note that the horizontal axis
scales here and in Figure 7 are different, but the actual kernel
execution time is the same.

To illustrate the effect of preemption on the kernel execution in
the GPU, Figure 7 and Figure 8 show the screen shots from the
NVIDIA visual profiler for the GPU occupancy for 5 I/O and the
compute kernels without and with preemption respectively. With-
out preemption the kernels are serialized. Preemption enables full
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Figure 9: Relative throughput for I/O bound workload. Higher
is better.

overlap between I/O and computations, and shortens the waiting
time of compute kernels (long lines at the beginning).

IO-bound workload.
We analyze the benefits of preemption for I/O-bound workloads

alone. In the experiments we invoke one or more I/O-intensive ma-
trix product kernels, but omit compute-intensive workloads from
the mix.

As Figure 9 shows, preemption overhead results in performance
degradation for a single kernel. We found that all of the 1024
threadblocks invoked by the kernel are preempted, and then re-
enqueued one after the other in different kernels. The computations
alone without I/O require about 5msec, and the overhead for re-
execution is about 20-50µsec per threadblock; hence the overhead
is comparable with the compute time. The performance degrada-
tion is correctly predicted by our model, which shows that with low
compute intensity and high overheads preemption is undesirable.

Note that when the number of I/O kernels grows, performance
improves slightly. One reason is that in different kernels the overlap
is not only between I/O in one kernel and computations in the other,
but also between computations in both kernels, resulting in better
GPU utilization. Another reason is the reduction in total I/O time,
most likely as a result of a better access pattern to the disk.

Throughput with RAMFS.
We consider the impact of I/O time on the throughput, with and

without preemption. In this experiment we run the same work-
loads but use the RAMFS in-memory file system to store the in-
put. Figure 10 shows the results for the mixed workload, and Fig-
ure 11 shows the performance for the I/O workload alone. As
expected, the speedup due to preemption is quite modest in the
first case, because fewer overlap opportunities are available. Also
as expected, in the I/O-bound workload the preemption overhead
dominates both I/O and compute time, which leads to performance
degradation.

Kernel runtime analysis.
We evaluate the impact of preemption on individual kernels, specif-

ically, on the total time a kernel spends in the system both waiting
and executing. All the kernels are enqueued at once, with the I/O
kernels in the top of the queue. As before, we invoke the experi-
ment with and without preemption, but now measure the comple-
tion time for each kernel and compute the average for I/O-intensive
and for compute-intensive kernels separately.

Figure 12 and Figure 13 show the results. The total time in the
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Figure 10: Relative throughput for mixed workload with
RAMFS. Higher is better.
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Figure 11: Relative throughput for IO bound workload using
RAMFS. Higher is better.

system for an I/O kernel with preemption increases dramatically,
whereas the compute kernels are processed much faster.

This experiment clearly shows that I/O kernels get starved by
the compute kernels. Initially, a preempted threadblock is replaced
by a threadblock of a compute kernel. However, since the current
system restarts it later as a single-threadblock kernel, the thread-
block is effectively placed in the hardware runtime queue after all
the threadblocks of the compute kernel. Therefore, each preempted
threadblock is delayed substantially.

To highlight this effect further, we compare the average restart
delay – the time a preempted threadblock spends outside the GPU
(i.e., the time from when the preemption is triggered until the thread-
block is restarted), for the mixed workload and the pure I/O-bound
workload with I/O kernels alone. The results are in Figure 14 and
Figure 15 respectively. We see that the average restart delay in Fig-
ure 14 is higher by about 300µsec regardless of the number of I/O
kernels invoked, showing that all preempted kernels get delayed by
the same time as compute kernels.

The starvation can be eliminated if the GPU allowed re-enqueuing
threadblocks to the top of the execution queue. However, we are not
aware of any such capability.

7. DISCUSSION
We believe that native GPU I/O support is an essential part of

the GPU general-purpose acceleration portfolio. However, with-
out proper support for I/O-driven preemption, the native GPU I/O
may be too wasteful in terms of power and compute resources. In
this paper we show that such support is beneficial in many cases,
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Figure 12: The relative average total time in the system per IO
kernel in mixed workload. Lower is better.
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Figure 13: The relative average total time in the system per
compute kernel in mixed workload. Lower is better.

describe the basic building blocks for designing the preemption
mechanism, and build a working prototype to analyze preemption
in a practical setting.

The limitations of the software-based solution are, however, ap-
parent: high re-invocation overhead and I/O kernel starvation. Be-
low we discuss a new hardware feature that may help alleviate these
problems.

Hardware yield instruction.
As we observe in Section 6, I/O-driven preemption is beneficial

for workloads with enough I/O to provide the opportunity for over-
lapping I/O with computations. But if the workload is dominated
by compute-bound kernels, the preemption results in starvation of
the preempted threadblocks. In the most general case, overcoming
this problem requires adding a complete on-demand preemption ca-
pability to the GPU, which might be too intrusive. Here we propose
a new GPU hardware feature that may help improve this problem
without major changes to the architecture.

We propose a new hardware instruction called yield(void

*addr). This instruction behaves similarly to the x86 mwait and
monitor pair. Specifically, when a threadblock calls yield, it ter-
minates and is removed from the execution queue. Upon write to
addr, the threadblock is enqueued into the head of the hardware
queue. The thread state checkpoint/restore can be done either by
hardware or by software.

The yield instruction ensures that the check of addr and the
preemption decision are performed atomically to avoid deadlock.
The yield instruction has no effect if the scheduling queue is
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Figure 14: The average restart delay per I/O threadblock in a
mixed workload. Lower is better.
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Figure 15: The average restart delay per I/O threadblock in a
I/O workload. Lower is better.

empty. yield(NULL) may evict the threadblock and enqeue it
again in the ready queue, which implements a kind of spinning.

The yield instruction can be useful beyond preemption sup-
port, for example for implementing GPU producer-consumer, con-
ditional variables, and others, and it might not require significant
changes in the existing hardware. In fact, we speculate that NVIDIA
GPUs already provide some form of preemption support to allow
nested parallelism in CUDA. A parent threadblock might be de-
scheduled in favor of the child kernel it invokes. Our attempts to
leverage the existing nested parallelism mechanisms for our pre-
emption have not been successful so far.

8. RELATED WORK
To the best of our knowledge, GPUpIO is the first software-based

solution that allows preemptive I/O on GPUs. This work has a
bearing on many areas, from I/O support for GPUs, to compilation
methods, GPU architectures, and programming techniques.

Preemption for GPUs. Chimera [7] proposes a set of hardware
extensions such as SM flushing, a GPU-specific preemption that
is enhanced to exploit the semantics of thread blocks in the GPU
programming model and the concept of idempotence to achieve low
preemption latency. However, Chimera focuses on preemption for
collaborative multitasking purposes.

OS I/O support for GPUs. GPUnet[3] and GPUfs[11] provide,
respectively, a native networking abstraction and file I/O API for
GPU applications, providing both programmability and performance
benefits. However, they share the same major limitation: they spin
on an I/O control register while waiting for the I/O operation to



complete.
Scheduling for heterogeneous processors. TimeGraph[2] pro-

vides better isolation and prioritization capabilities for real-time
tasks, by applying different scheduling policies on command groups
issued by GPU accelerated applications. PTask[9] proposes a data-
flow programming model that is leveraged by the OS scheduler to
provide fairness and performance isolation for heterogeneous pro-
cessors.

Checkpoint Restore for GPUs. CheCUDA[13] and NVCR[5]
provide a checkpoint-restart mechanism for CUDA applications
in the context of fault-tolerance and CUDA application migration.
However, these works do not deal with the complex memory hier-
archy of the GPU and allow checkpointing only in between kernel
invocations. Consequently, these implementations cannot be used
for preemptive I/O.

Compiler support for GPUs. Dandelion[10] is a language and
system support for data-parallel applications on heterogeneous ar-
chitectures, which effectively offloads portions of data-parallel code
to available computing resources.

9. CONCLUSION
In this paper, we addressed the problem of preemptive I/O on

GPUs. Due to the lack of hardware support on today’s GPUs, native
GPU I/O layer implementations are forced to actively spin on the
GPU, which results in lower overall throughput and higher energy
consumption. We motivated our work with a simple, but enlighten-
ing performance model, showing the promise of I/O driven preemp-
tion. We proposed a full software-based design composed of two
major key mechanisms: checkpoint-restore and preemption-restart.
We implemented a prototype, GPUpIO, and extensively evaluated
our solution on several workloads. We showed that our approach
achieves optimal GPU utilization with full I/O-compute overlap in
some cases, despite the challenging hardware characteristics. We
also recognize the high overheads imposed by the preemption, in
our experiments with RAMFS.

Finally, we showed that due to the limited interface given to the
internal GPU scheduling queues, a software-based solution results
in starvation of I/O kernels. We proposed a hardware mechanism,
yield, that may alleviate this problem.
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